IEEE Access (Jan 2024)

SUPPLY: Sustainable Multi-UAV Performance-Aware Placement Algorithm for Flying Networks

  • Pedro Ribeiro,
  • Andre Coelho,
  • Rui Campos

DOI
https://doi.org/10.1109/ACCESS.2024.3488574
Journal volume & issue
Vol. 12
pp. 159445 – 159461

Abstract

Read online

Unmanned Aerial Vehicles (UAVs) are versatile platforms for carrying communications nodes such as Wi-Fi Access Points and cellular Base Stations. Flying Networks (FNs) offer on-demand wireless connectivity where terrestrial networks are impractical or unsustainable. However, managing communications resources in FNs presents challenges, particularly in optimizing UAV placement to maximize Quality of Service (QoS) for Ground Users (GUs) while minimizing energy consumption, given the UAVs’ limited battery life. Existing multi-UAV placement solutions primarily focus on maximizing coverage areas, assuming static UAV positions and uniform GU distribution, overlooking energy efficiency and heterogeneous QoS requirements. We propose the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which defines and optimizes UAV trajectories to reduce energy consumption while ensuring QoS based on Signal-to-Noise Ratio (SNR) in the links with GUs. Additionally, we introduce the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate energy consumption. Using both MUAVE and ns-3 simulators, we evaluate SUPPLY in typical and random networking scenarios, focusing on energy consumption and network performance. Results show that SUPPLY reduces energy consumption by up to 25% with minimal impact on throughput and delay.

Keywords