Translational Psychiatry (Feb 2023)
Cross-tissue correlations of genome-wide DNA methylation in Japanese live human brain and blood, saliva, and buccal epithelial tissues
Abstract
Abstract Neuroepigenetics considers genetic sequences and the interplay with environmental influences to elucidate vulnerability risk for various neurological and psychiatric disorders. However, evaluating DNA methylation of brain tissue is challenging owing to the issue of tissue specificity. Consequently, peripheral surrogate tissues were used, resulting in limited progress compared with other epigenetic studies, such as cancer research. Therefore, we developed databases to establish correlations between the brain and peripheral tissues in the same individuals. Four tissues, resected brain tissue, blood, saliva, and buccal mucosa (buccal), were collected from 19 patients (aged 13–73 years) who underwent neurosurgery. Moreover, their genome-wide DNA methylation was assessed using the Infinium HumanMethylationEPIC BeadChip arrays to determine the cross-tissue correlation of each combination. These correlation analyses were conducted with all methylation sites and with variable CpGs, and with when these were adjusted for cellular proportions. For the averaged data for each CpG across individuals, the saliva–brain correlation (r = 0.90) was higher than that for blood–brain (r = 0.87) and buccal–brain (r = 0.88) comparisons. Among individual CpGs, blood had the highest proportion of CpGs correlated to the brain at nominally significant levels (19.0%), followed by saliva (14.4%) and buccal (9.8%). These results were similar to the previous IMAGE-CpG results; however, cross-database correlations of the correlation coefficients revealed a relatively low (brain vs. blood: r = 0.27, saliva: r = 0.18, and buccal: r = 0.24). To the best of our knowledge, this is the fifth study in the literature initiating the development of databases for correlations between the brain and peripheral tissues in the same individuals. We present the first database developed from an Asian population, specifically Japanese samples (AMAZE-CpG), which would contribute to interpreting individual epigenetic study results from various Asian populations.