Advanced Science (Jan 2024)

Activating the Basal Planes and Oxidized Oxygens in Layer‐Structured Na0.6CoO2 for Boosted OER Activity

  • Bing Xiong,
  • Tingxin Fu,
  • Qiuping Huang,
  • Jianlin Wang,
  • Zhangzhang Cui,
  • Zhengping Fu,
  • Yalin Lu

DOI
https://doi.org/10.1002/advs.202305959
Journal volume & issue
Vol. 11, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract With the CoO2 slabs consisting of Co4O4 cubane structure, layered NaxCoO2 are considered promising candidates for oxygen evolution reaction (OER) in alkaline media given their earth‐abundant and structural advantages. However, due to the strong adsorption of intermediates on the large basal planes, NaxCoO2 cannot meet the activity demands. Here, a novel one‐pot synthesis strategy is proposed to realize the high solubility of iron in NaxCoO2 in an air atmosphere. The optimist Na0.6Co0.9Fe0.1O2 exhibits enhanced OER activity compared to their pristine and other reported Fe‐doped NaxCoO2 counterparts. Such an enhancement is mainly ascribed to the abundant active sites on the activated basal planes and the participation of oxidized oxygen as active sites independently, which breaks the scaling relationship limit in the OER process. This work is expected to contribute to the understanding of the modification mechanism of Fe‐doped cobalt‐based oxides and the exploitation of layer‐structured oxides for energy application.

Keywords