Applied Sciences (Nov 2021)
Sentinel Lymph Node Metastasis on Clinically Negative Patients: Preliminary Results of a Machine Learning Model Based on Histopathological Features
Abstract
The reported incidence of node metastasis at sentinel lymph node biopsy is generally low, so that the majority of women underwent unnecessary invasive axilla surgery. Although the sentinel lymph node biopsy is time consuming and expensive, it is still the intra-operative exam with the highest performance, but sometimes surgery is achieved without a clear diagnosis and also with possible serious complications. In this work, we developed a machine learning model to predict the sentinel lymph nodes positivity in clinically negative patients. Breast cancer clinical and immunohistochemical features of 907 patients characterized by a clinically negative lymph node status were collected. We trained different machine learning algorithms on the retrospective collected data and selected an optimal subset of features through a sequential forward procedure. We found comparable performances for different classification algorithms: on a hold-out training set, the logistics regression classifier with seven features, i.e., tumor diameter, age, histologic type, grading, multiplicity, in situ component and Her2-neu status reached an AUC value of 71.5% and showed a better trade-off between sensitivity and specificity (69.4 and 66.9%, respectively) compared to other two classifiers. On the hold-out test set, the performance dropped by five percentage points in terms of accuracy. Overall, the histological characteristics alone did not allow us to develop a support tool suitable for actual clinical application, but it showed the maximum informative power contained in the same for the resolution of the clinical problem. The proposed study represents a starting point for future development of predictive models to obtain the probability for lymph node metastases by using histopathological features combined with other features of a different nature.
Keywords