Water (Aug 2021)

Nested Recharge Systems in Mountain Block Hydrology: High-Elevation Snowpack Generates Low-Elevation Overwinter Baseflow in a Rocky Mountain River

  • Éowyn M. S. Campbell,
  • M. Cathryn Ryan

DOI
https://doi.org/10.3390/w13162249
Journal volume & issue
Vol. 13, no. 16
p. 2249

Abstract

Read online

The majority of each year′s overwinter baseflow (i.e., winter streamflow) in a third-order eastern slopes tributary is generated from annual melting of high-elevation snowpack which is transmitted through carbonate and siliciclastic aquifers. The Little Elbow River and its tributaries drain a bedrock system formed by repeated thrust faults that express as the same siliciclastic and carbonate aquifers in repeating outcrops. Longitudinal sampling over an 18 km reach was conducted at the beginning of the overwinter baseflow season to assess streamflow provenance. Baseflow contributions from each of the two primary aquifer types were apportioned using sulfate, δ34SSO4, and silica concentrations, while δ18OH2O composition was used to evaluate relative temperature and/or elevation of the original precipitation. Baseflow in the upper reaches of the Little Elbow was generated from lower-elevation and/or warmer precipitation primarily stored in siliciclastic units. Counterintuitively, baseflow generated in the lower-elevation reaches originated from higher-elevation and/or colder precipitation stored in carbonate units. These findings illustrate the role of nested flow systems in mountain block recharge: higher-elevation snowmelt infiltrates through fracture systems in the cliff-forming—often higher-elevation—carbonates, moving to the lower-elevation valley through intermediate flow systems, while winter baseflow in local flow systems in the siliciclastic valleys reflects more influence from warmer precipitation. The relatively fast climatic warming of higher elevations may alter snowmelt timing, leaving winter water supply vulnerable to climatic change.

Keywords