Journal of Cardiothoracic Surgery (May 2022)

MiR-144-3p inhibits the proliferation and metastasis of lung cancer A549 cells via targeting HGF

  • Guiju Fang,
  • Canhui Zhang,
  • Zhixin Liu,
  • Zhiwen Peng,
  • Meiyan Tang,
  • Qing Xue

DOI
https://doi.org/10.1186/s13019-022-01861-3
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Aim MicroRNAs have been confirmed as vital regulators in gene expression, which could affect multiple cancer cell biological behaviors. This study aims to elucidate the molecular mechanism of miR-144-3p in lung cancer cellular proliferation and metastasis. Methods MiR-144-3p expression in lung cancer tissues and cell lines was detected by qRT-PCR. HGF was predicted as the target gene of miR-144-3p using TargetScan and dual luciferase reporter assay. Immunohistochemistry and qRT-PCR were used to explore the impacts of HCF on lung cancer tissues and cell lines. Impacts of miR-144-3p and HGF on cancer cellular proliferation, migration and invasion were elucidated by CCK-8, Flow cytometry, Transwell invasion and Wound-healing assay. Moreover, nude mouse xenograft model was established to evaluate the effects of miR-144-3p on lung cancer cells. Results MiR-144-3p exhibited a reduction in both lung cancer tissues and cell lines. HGF was a direct target of miR-144-3p. In contrast to the miR-144-3p expression level, HGF showed a higher level in lung cancer tissues and cell lines. Overexpression miR-144-3p suppressed A549 and NCI-H1299 cell proliferation and metastasis, whereas this was reversed by HGF. MiR-144-3p exhibited an inhibitory effect on A549 cell-induced tumor growth of nude mice. Conclusions This study reveals miR-144-3p/HGF axis may be involved in the suppression of lung cancer cellular proliferation and development, and miR-144-3p may function as a potential therapeutic target in lung cancer treatment in the future.

Keywords