Deoxynivalenol: Toxicology, Degradation by Bacteria, and Phylogenetic Analysis
Anne Caroline Schoch Marques Pinto,
Camilla Reginatto De Pierri,
Alberto Gonçalves Evangelista,
Ana Silvia de Lara Pires Batista Gomes,
Fernando Bittencourt Luciano
Affiliations
Anne Caroline Schoch Marques Pinto
Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil
Camilla Reginatto De Pierri
Graduate Program in Sciences—Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Paraná, 100 Coronel Francisco H. dos Santos Avenue, Jardim das Américas, Curitiba 81530-000, Brazil
Alberto Gonçalves Evangelista
Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil
Ana Silvia de Lara Pires Batista Gomes
Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil
Fernando Bittencourt Luciano
Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil
Deoxynivalenol (DON) is a toxic secondary metabolite produced by fungi that contaminates many crops, mainly wheat, maize, and barley. It affects animal health, causing intestinal barrier impairment and immunostimulatory effect in low doses and emesis, reduction in feed conversion rate, and immunosuppression in high doses. As it is very hard to completely avoid DON’s production in the field, mitigatory methods have been developed. Biodegradation has become a promising method as new microorganisms are studied and new enzymatic routes are described. Understanding the common root of bacteria with DON degradation capability and the relationship with their place of isolation may bring insights for more effective ways to find DON-degrading microorganisms. The purpose of this review is to bring an overview of the occurrence, regulation, metabolism, and toxicology of DON as addressed in recent publications focusing on animal production, as well as to explore the enzymatic routes described for DON’s degradation by microorganisms and the phylogenetic relationship among them.