Journal of Experimental Nanoscience (Dec 2022)

Cytotoxic effect of cobalt oxide–graphene oxide nanocomposites on melanoma cell line

  • Anju Mishra,
  • Anu Singh,
  • Hemant R. Kushwaha,
  • Amodini Mishra

DOI
https://doi.org/10.1080/17458080.2022.2115483
Journal volume & issue
Vol. 17, no. 1
pp. 509 – 521

Abstract

Read online

Cobalt oxide/graphene oxide (Co3O4/GO) nanocomposites were synthesised using the co-precipitation synthesis process. The polycrystalline nature of Co3O4 nanoparticles onto GO sheets is studied by X-ray diffraction (XRD) pattern where nanoparticles were found in polycrystalline nature with a particle size of 35 nm. The structural and morphological were using field emission scanning electron microscopy (FESEM) and EDX, where a distribution of Co3O4 nanoparticles on GO nanosheets was observed. The effect of Co3O4 nanoparticles on GO nanosheets was studied using a Raman spectrometer and found enhancement in the Raman peaks of GO sheets after the decoration of Co3O4 nanoparticles on GO nanosheets. It is observed that the ID/IG ratio of the D and G bands was increased from 1.08 (GO) to 1.11 (Co3O4/GO). In our present study, we explored the potential cytotoxic effects of Co3O4/GO nanocomposites in Mice melanoma cells (B16F10), where MTT assay suggested that (Co3O4/GO) nanocomposite shows a significant effect on cell viability compared to GO i.e. 60% cell viability was observed at 200 µg/mL of GO whereas it was only 37% for Co3O4/GO nanocomposite indicating improved anti-cancerous activity at this concentration. This is the first time that Co3O4/GO nanocomposite is tested for its cytotoxic effect and the results suggest that it can be used as an alternative source for tumour or cancer treatment.

Keywords