Journal of Innate Immunity (Jul 2021)

Flagellin Alleviates Airway Allergic Response by Stabilizing Eosinophils through Modulating Oxidative Stress

  • Xiang-Qian Luo,
  • Jun Liu,
  • Li-Hua Mo,
  • Gui Yang,
  • Fei Ma,
  • Yan Ning,
  • Ping-Chang Yang,
  • Da-Bo Liu

DOI
https://doi.org/10.1159/000515463

Abstract

Read online

Eosinophil (Eo) degranulation plays a central role in the initiations of allergic attacks. Flagellin (FGN), the major component of bacterial flagella, has immune regulatory functions. This study aims to investigate the role of FGN in alleviating the allergic reaction by stabilizing Eos. A toll-like receptor 5-knockout mouse strain was employed to test the role of FGN in stabilizing Eos. An airway allergy mouse model was developed to test the administration of FGN in alleviating the airway allergy by stabilizing Eos. The results showed that FGN was required in stabilizing Eos in the airway tissues. FGN prevented specific antigen-induced Eo activation. Oxidative stress was associated with the antigen-induced Eo activation that could be counteracted by the presence of FGN. The FGN levels were lower and chymase levels were higher in the airway tissues of mice with allergic inflammation. Negative correlation was detected between the data of FGN and chymase in the lung tissues. Chymase physically contacted FGN to speed up its degradation. The administration of FGN alleviated experimental allergic inflammation in the mouse airways by stabilized Eos in the lung tissues. In conclusion, FGN contributes to Eo stabilization. The administration of FGN alleviates the experimental airway allergy. The data suggest that FGN can be a candidate to be employed in the treatment of allergic disorders.

Keywords