Slovenščina 2.0: Empirične, aplikativne in interdisciplinarne raziskave (Jul 2021)
Avtomatsko razpoznavanja slovenskega govora za dnevnoinformativne oddaje
Abstract
Na področju govornih in jezikovnih tehnologij predstavlja avtomatsko razpoznavanje govora enega izmed ključnih gradnikov. V prispevku bomo predstavili razvoj avtomatskega razpoznavalnika slovenskega govora za domeno dnevnoinformativnih oddaj. Arhitektura sistema je zasnovana na globokih nevronskih mrežah. Pri tem smo ob upoštevanju razpoložljivih govornih virov izvedli modeliranje z različnimi aktivacijskimi funkcijami. V postopku razvoja razpoznavalnika govora smo preverili tudi, kakšen je vpliv izgubnih govornih kodekov na rezultate razpoznavanja govora. Za učenje razpoznavalnika govora smo uporabili bazi UMB BNSI Broadcast News in IETK-TV. Skupni obseg govornih posnetkov je znašal 66 ur. Vzporedno z globokimi nevronskimi mrežami smo povečali slovar razpoznavanja govora, ki je tako znašal 250.000 besed. Na ta način smo znižali delež besed izven slovarja na 1,33 %. Z razpoznavanjem govora na testni množici smo dosegli najboljšo stopnjo napačno razpoznanih besed (WER) 15,17 %. Med procesom vrednotenja rezultatov smo izvedli tudi podrobnejšo analizo napak razpoznavanja govora na osnovi lem in F-razredov, ki v določeni meri pokažejo na zahtevnost slovenskega jezika za takšne scenarije uporabe tehnologije.
Keywords