Pizhūhish va barnāmah/rīzī-i rūstāyī (Dec 2019)

Land Subsidence Vulnerability Assessment of Rural Settlements in Fars Province

  • Ali Goli,
  • Maryam Moradi,
  • Maryam Dehghani

DOI
https://doi.org/10.22067/jrrp.v8i4.78463
Journal volume & issue
Vol. 8, no. 4
pp. 91 – 106

Abstract

Read online

Purpose- Land subsidence is caused by natural factors and human activities around the world. Fars Province, located in the south of Iran, is subject to land subsidence due to the uncontrolled exploitation of groundwater, causing damages to the population and human settlements and also environmental, social and economic areas. Design/methodology/approach- The present research is descriptive in terms of describing land subsidence in the case study region, whereas it is also analytical as time series analysis techniques based on Radar Interferometry (InSAR) is applied to monitor temporal changes in subsidence in Darab and Fasa Plains, including 470 rural points. Using 8 ENVISAT ASAR images spanning between 2005 and 2010, nine Interferograms were processed. In the study area. Geographic Information System (GIS) is then used to study groundwater level decline at the well locations in a 24-year period (from 1991 to 2015). Findings- The results of the research confirm that there is a significant correlation between groundwater water level decline and land surface subsidence. Time series analysis of the processed Interferograms indicate the mean displacement velocity map, demonstrating the maximum subsidence rate of 25 cm/yr. The InSAR analysis reveal within the study area subsidence rate of 25 cm/year in 24 years period and locally exceeding 30 cm/yr in the last decade. This area of significant subsidence is limited in its spatial extent to the agricultural land and is partly influenced by the large-scale over-exploitation of groundwater resources in the region study. The temporal and areal relationships of subsidence and groundwater level data suggest that a significant part of the observed subsidence in the Darab region is caused by intense groundwater extraction which has led to widespread compaction within the upper parts of the up to 300m. Socioeconomic analysis and the subsidence hazard map show that 105523 people are generally at risk of subsidence, of 65068 who are at high risk. In addition, there are 2679 socioeconomic infrastructures such as public service at risk of damage by land subsidence. Research limitations/implications- Limitation in In SAR data access, especially for long-term data was one of the main limitations in land subsidence research and also in this research. Practical implications- Integrated water resource management and the observed extraction of groundwater could influence the subsidence rate in the regions exposed to land subsidence. Originality/value- This research will be important to provide vulnerability in regions with groundwater overexploitation.

Keywords