Geophysical Research Letters (Oct 2023)
Formation of Electron Butterfly Pitch Angle Distributions in Saturn's Magnetosphere Due To Scattering by Equatorial ECH Waves
Abstract
Abstract The features of electron pitch angle distributions (PADs) often imply different physical mechanisms in planetary magnetospheres. We report a simultaneous equatorial electrostatic electron cyclotron harmonic (ECH) wave event with butterfly PADs of electrons at L ∼ 7.6–9 observed by the Cassini spacecraft. Via calculating the bounce‐averaged electron diffusion rates, we found that Saturnian ECH waves can resonate with ∼10 eV to several keV electrons at <60° pitch angles at time scales from ∼10−8 to 10−4 s−1. Simulations show that the formation of ∼100 eV to ∼1 keV electron butterfly PADs are mainly caused by the pitch angle scattering of electrons at low pitch angles (<30°) and the momentum scattering at intermediate pitch angles of ∼30°–45°, though previous studies suggested the adiabatic transport is the dominated mechanism. Additionally, our results successfully reproduce the variation of peak pitch angles (αp) and phase space density ratios between α90° and αp with L‐shell.
Keywords