Current Research in Green and Sustainable Chemistry (Jan 2024)

Properties and photocatalytic applications of black TiO2 produced by thermal or plasma hydrogenation

  • Manjunath Veeranna Shinnur,
  • MariaPia Pedeferri,
  • Maria Vittoria Diamanti

Journal volume & issue
Vol. 8
p. 100415

Abstract

Read online

TiO2 nanomaterial photocatalysts for energy and environmental applications have attracted the interest of researchers in recent decades. The broad bandgap (3–3.2 eV), which limits the quantity of light absorption, and the relatively high charge-carrier recombination, which limits photocatalytic activity, are the key bottlenecks. The discovery of black TiO2 in 2011 sparked global research attention and renewed optimism for solving this challenge. The presence of defects such as Ti3+ species and oxygen vacancies at the surface of black TiO2 nanostructures – so called due to the color assumed by the oxide following a reduction process - is responsible for enhancing the optical absorption of UV to visible light. This review focuses on recent advancements in the development of black TiO2 nanomaterials, including description of the synthesis processes, focused on plasma and thermal methods to convert TiO2 to black TiO2, discussion of black TiO2 properties, and diverse applications of black TiO2, and concludes by addressing some essential concerns that must be tackled to unleash the desired future developments, particularly for solar energy production and pollutants decomposition.

Keywords