Energies (Dec 2017)

A Security Level Classification Method for Power Systems under N-1 Contingency

  • Zhigang Lu,
  • Liangce He,
  • Dan Zhang,
  • Boxuan Zhao,
  • Jiangfeng Zhang,
  • Hao Zhao

DOI
https://doi.org/10.3390/en10122055
Journal volume & issue
Vol. 10, no. 12
p. 2055

Abstract

Read online

Security assessment is crucial for the reliable and secure operation of power systems. This paper proposes a security level classification (SLC) method to analyze the security level of power systems both qualitatively and quantitatively. In this SLC method, security levels are graded according to a comprehensive safety index (CSI), which is defined by integrating the system margin index (SMI) and load entropy. The SMI depends on the operating load and the total supply capacity (TSC) under N-1 contingency, and the load entropy reflects the heterogeneity of load distribution calculated from entropy theory. In order to calculate the TSC under N-1 contingency considering both of the computational accuracy and speed, the TSC is converted into an extended conic quadratic programming (ECQP) model. In addition, the load boundary vector (LBV) model is established to obtain the capacity limit of each load bus, and thus detect potential risks of power systems. Finally, two modified practical power systems and the IEEE 118-bus test system are studied to validate the feasibility of the proposed SLC method.

Keywords