Advances in Climate Change Research (Jun 2024)
Antecedent snowmelt and orographic precipitation contributions to water supply of Pakistan disastrous floods, 2022
Abstract
In 2022, the Pakistan witnessed the hottest spring and wettest summer in history. And devastating floods inundated a large portion of Pakistan and caused enormous damages. However, the primary water source and its contributions to these unprecedented floods remain unclear. Based on the reservoir inflow measurements, Multi-Source Weighted-Ensemble Precipitation (MSWEP), the fifth generation ECMWF atmospheric reanalysis (ERA5) products, this study quantified the contributions of monsoon precipitation, antecedent snowmelts, and orographic precipitation enhancement to floods in Pakistan. We found that the Indus experienced at least four inflow uprushes, which was mainly supplied by precipitation and snowmelt; In upper Indus, abnormally high temperature continued to influence the whole summer and lead to large amounts of snowmelts which not only was a key water supply to the flood but also provided favorable soil moisture conditions for the latter precipitation. Before July, the snowmelt has higher contributions than the precipitation to the streamflow of Indus River, with contribution value of more than 60%. Moreover, the snowmelt could still supply 20%–40% water to the lower Indus in July and August; The leading driver of 2022 mega-floods over the southern Pakistan in July and August was dominated by the precipitation, where terrain disturbance induced precipitation account to approximately 33% over the southern Pakistan. The results help to understand the mechanisms of flood formation, and to better predict future flood risks over complex terrain regions.