iScience (Dec 2024)

Textile microfibers valorization by catalytic hydrothermal carbonization toward high-tech carbonaceous materials

  • Silvia Parrilla-Lahoz,
  • Marielis C. Zambrano,
  • Joel J. Pawlak,
  • Richard A. Venditti,
  • Tomas Ramirez Reina,
  • Jose Antonio Odriozola,
  • Melis S. Duyar

Journal volume & issue
Vol. 27, no. 12
p. 111427

Abstract

Read online

Summary: Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.28 million tons of microfibers per year) into the circular economy by catalytic upcycling to carbon nanomaterials. Herein, we show that cotton and polyester can be converted to filamentous solid carbon nanostructures using a Fe-Ni catalyst during HTC. Results revealed the conversion of microfibers into amorphous and graphitic carbon structures, including carbon nanotubes from a cotton/polyethylene terephthalate (PET) mixture. HTC at 200°C and 22 bar pressure produced graphitic carbon in all samples, demonstrating that mixed microfiber wastes can be valorized to provide potentially valuable carbon structures by modifying reaction parameters and catalyst formulation.

Keywords