Advances in Radio Science (Sep 2017)

Eine selbstkonsistente Carleman Linearisierung zur Analyse von Oszillatoren

  • H. Weber,
  • W. Mathis

DOI
https://doi.org/10.5194/ars-15-223-2017
Journal volume & issue
Vol. 15
pp. 223 – 230

Abstract

Read online

Die Analyse nichtlinearer dynamischer Schaltungen ist bis heute eine herausfordernde Aufgabe, da nur selten analytische Lösungen angegeben werden können. Daher wurden eine Vielzahl von Methoden entwickelt, um eine qualitative oder quantitative Näherung für die Lösungen der Netzwerkgleichung zu erhalten. Oftmals wird beispielsweise eine Kleinsignalanalyse mit Hilfe einer Taylorreihe in einem Arbeitspunkt durchgeführt, die nach den Gliedern erster Ordnung abgebrochen wird. Allerdings ist diese Linearisierung nur in der Nähe des stabilen Arbeitspunktes für hyperbolische Systeme gültig. Besonders für die Analyse des dynamischen Verhaltens von Oszillatoren treten jedoch nicht-hyperbolische Systeme auf, sodass diese Methode nicht angewendet werden kann Mathis(2000). Carleman hat gezeigt, dass nichtlineare Differentialgleichungen mit polynomiellen Nichtlinearitäten in ein unendliches System von linearen Differentialgleichungen transformiert werden können Carleman(1932). Wird das unendlichdimensionale Gleichungssystem für numerische Zwecke abgebrochen, kann bei Oszillatoren der Übergang in eine stationäre Schwingung (Grenzzyklus) nicht wiedergegeben werden.In diesem Beitrag wird eine selbstkonsistente Carleman Linearisierung zur Untersuchung von Oszillatoren vorgestellt, die auch dann anwendbar ist, wenn die Nichtlinearitäten keinen Polynomen entsprechen. Anstelle einer linearen Näherung um einen Arbeitspunkt, erfolgt mit Hilfe der Carleman Linearisierung eine Approximation auf einem vorgegebenen Gebiet. Da es jedoch mit der selbstkonsistenten Technik nicht möglich ist, das stationäre Verhalten von Oszillatoren zu beschreiben, wird die Berechnung einer Poincaré-Abbildung durchgeführt. Mit dieser ist eine anschließende Analyse des Oszillators möglich.