Microorganisms (Jan 2021)
Animal Fat as a Substrate for Production of n-6 Fatty Acids by Fungal Solid-State Fermentation
Abstract
The method of solid-state fermentation (SSF) represents a powerful technology for the fortification of animal-based by-products. Oleaginous Zygomycetes fungi are efficient microbial cell factories used in SSF to valorize a wide range of waste and rest cereal materials. The application of this fermentation technique for utilization and biotransformation of animal-based materials represents a distinguished step in their treatment. In this study, for the first time, the strain Umbelopsis isabellina CCF2412 was used for the bioconversion of animal fat by-products to the fermented bioproducts enriched with n-6 polyunsaturated fatty acids, mainly γ-linolenic acid (GLA). Bioconversion of both cereals and the animal fat by-product resulted in the production of fermented bioproducts enriched with not just GLA (maximal yield was 6.4 mg GLA/g of fermented bioproduct), but also with high yields of glucosamine. Moreover, the fermentation on the cornmeal matrix led to obtaining bioproduct enriched with β-carotene. An increased amount of β-carotene content improved the antioxidant stability of obtained fermented bioproducts. Furthermore, the application of Fourier-transform infrared spectroscopy for rapid analysis and characterization of the biochemical profile of obtained SSF bioproducts was also studied.
Keywords