Journal of Advanced Dielectrics (Aug 2024)
Preparation and microwave absorption properties of flexible composites containing Ag decorated polystyrene powders
Abstract
Polystyrene (PS) microspheres have the advantages of good stability, corrosion resistance and low density, which have a broad application prospect. In this paper, PS composite microspheres with 20% silver plating content were prepared by chemical plating method and incorporated into polydimethylsiloxane (PDMS) flexible matrix to prepare Ag@PS/PDMS flexible wave-absorbing materials. The electromagnetic parameters were adjusted to optimize the dielectric and wave-absorbing properties by varying the additional amount of Ag@PS composite microspheres in Ag@PS/PDMS composites. The X-ray diffraction (XRD) results proved the successful preparation of Ag@PS composite microspheres. The SEM and EDS images indicated that the Ag particles were attached to the external surface of PS. The presence of Ag particles in the Ag@PS composite microspheres enhances their electrical conductivity and enables the formation of a conductive network. This, in turn, improves the composites’ dielectric constant. The optimal wave-absorbing capability of the composites was achieved when the Ag@PS composite microspheres were added at a weight percentage of 50%. When the sample attains a thickness of 1.8[Formula: see text]mm, a reflection loss of at least −39.8[Formula: see text]dB is attained at 10.4[Formula: see text]GHz, along with a bandwidth of 1.6[Formula: see text]GHz (9.1–10.7[Formula: see text]GHz) for the effective absorption bandwidth (EAB). The pressure-sensitive properties of the pliable composites were investigated as well. The optimal pressure-sensitive performance of Ag@PS/PDMS composites was achieved with a 60[Formula: see text]wt.% addition of Ag@PS composite microspheres. The resistance undergoes significant changes when subjected to pressure with a sensitivity of 9.7. The results indicate that the flexible composites’ wave-absorption and pressure-sensitivity properties can be modulated by adjusting the amount of Ag@PS composite microspheres added.
Keywords