Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States; Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
Sunyoung Lee
Department of Pediatrics, University of California, San Diego, San Diego, United States
Maya E Kotas
Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, University of California, San Francisco, San Francisco, United States
Maria Fernanda de Mello Costa
Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
Nicolas P Holcomb
Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
Abigail Jaquish
Department of Pediatrics, University of California, San Diego, San Diego, United States
Gargi Palashikar
Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
Marcella Soewignjo
Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
Margaret McDaniel
Department of Immunology, University of Washington, Seattle, United States
Ichiro Matsumoto
Monell Chemical Senses Center, Philadelphia, United States
Robert Margolskee
Monell Chemical Senses Center, Philadelphia, United States
Jakob Von Moltke
Department of Immunology, University of Washington, Seattle, United States
Noam A Cohen
Monell Chemical Senses Center, Philadelphia, United States; Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, United States; Corporal Michael J. Crescenz Veterans Administration Medical Center Surgical Service, Philadelphia, United States
Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States; Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
While the lung bears significant regenerative capacity, severe viral pneumonia can chronically impair lung function by triggering dysplastic remodeling. The connection between these enduring changes and chronic disease remains poorly understood. We recently described the emergence of tuft cells within Krt5+ dysplastic regions after influenza injury. Using bulk and single-cell transcriptomics, we characterized and delineated multiple distinct tuft cell populations that arise following influenza clearance. Distinct from intestinal tuft cells which rely on Type 2 immune signals for their expansion, neither IL-25 nor IL-4ra signaling are required to drive tuft cell development in dysplastic/injured lungs. In addition, tuft cell expansion occurred independently of type I or type III interferon signaling. Furthermore, tuft cells were also observed upon bleomycin injury, suggesting that their development may be a general response to severe lung injury. While intestinal tuft cells promote growth and differentiation of surrounding epithelial cells, in the lungs of tuft cell deficient mice, Krt5+ dysplasia still occurs, goblet cell production is unchanged, and there remains no appreciable contribution of Krt5+ cells into more regionally appropriate alveolar Type 2 cells. Together, these findings highlight unexpected differences in signals necessary for murine lung tuft cell amplification and establish a framework for future elucidation of tuft cell functions in pulmonary health and disease.