Electronic Journal of Qualitative Theory of Differential Equations (Oct 2008)
First order impulsive differential inclusions with periodic conditions
Abstract
In this paper, we present an impulsive version of Filippov's Theorem for the first-order nonresonance impulsive differential inclusion $$ \begin{array}{rlll} y'(t)-\lambda y(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\\ y(t^+_{k})-y(t^-_k)&=&I_{k}(y(t_{k}^{-})), &k=1,\ldots,m,\\ y(0)&=&y(b), \end{array} $$ where $J=[0,b]$ and $F: J \times \mathbb{R}^n\to{\cal P}(\mathbb{R}^n)$ is a set-valued map. The functions $I_k$ characterize the jump of the solutions at impulse points $t_k$ ($k=1,\ldots,m.$). Then the relaxed problem is considered and a Filippov-Wasewski result is obtained. We also consider periodic solutions of the first order impulsive differential inclusion $$ \begin{array}{rlll} y'(t) &\in& \varphi(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\\ y(t^+_{k})-y(t^-_k)&=&I_{k}(y(t_{k}^{-})), &k=1,\ldots,m,\\ y(0)&=&y(b), \end{array} $$ where $\varphi: J\times \mathbb{R}^n\to{\cal P}(\mathbb{R}^n)$ is a multi-valued map. The study of the above problems use an approach based on the topological degree combined with a Poincar\'e operator.