Drones (Dec 2023)
Integration of Unmanned Aerial Vehicle Imagery and Machine Learning Technology to Map the Distribution of Conifer and Broadleaf Canopy Cover in Uneven-Aged Mixed Forests
Abstract
Uneven-aged mixed forests have been recognized as important contributors to biodiversity conservation, ecological stability, carbon sequestration, the provisioning of ecosystem services, and sustainable timber production. Recently, numerous studies have demonstrated the applicability of integrating remote sensing datasets with machine learning for forest management purposes, such as forest type classification and the identification of individual trees. However, studies focusing on the integration of unmanned aerial vehicle (UAV) datasets with machine learning for mapping of tree species groups in uneven-aged mixed forests remain limited. Thus, this study explored the feasibility of integrating UAV imagery with semantic segmentation-based machine learning classification algorithms to describe conifer and broadleaf species canopies in uneven-aged mixed forests. The study was conducted in two sub-compartments of the University of Tokyo Hokkaido Forest in northern Japan. We analyzed UAV images using the semantic-segmentation based U-Net and random forest (RF) classification models. The results indicate that the integration of UAV imagery with the U-Net model generated reliable conifer and broadleaf canopy cover classification maps in both sub-compartments, while the RF model often failed to distinguish conifer crowns. Moreover, our findings demonstrate the potential of this method to detect dominant tree species groups in uneven-aged mixed forests.
Keywords