Atmospheric Chemistry and Physics (Apr 2019)

A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water

  • N. Hiranuma,
  • K. Adachi,
  • D. M. Bell,
  • D. M. Bell,
  • F. Belosi,
  • H. Beydoun,
  • B. Bhaduri,
  • B. Bhaduri,
  • H. Bingemer,
  • C. Budke,
  • H.-C. Clemen,
  • F. Conen,
  • K. M. Cory,
  • J. Curtius,
  • P. J. DeMott,
  • O. Eppers,
  • S. Grawe,
  • S. Hartmann,
  • N. Hoffmann,
  • K. Höhler,
  • E. Jantsch,
  • A. Kiselev,
  • T. Koop,
  • G. Kulkarni,
  • A. Mayer,
  • M. Murakami,
  • M. Murakami,
  • B. J. Murray,
  • A. Nicosia,
  • A. Nicosia,
  • M. D. Petters,
  • M. Piazza,
  • M. Polen,
  • N. Reicher,
  • Y. Rudich,
  • A. Saito,
  • G. Santachiara,
  • T. Schiebel,
  • G. P. Schill,
  • J. Schneider,
  • L. Segev,
  • E. Stopelli,
  • E. Stopelli,
  • R. C. Sullivan,
  • K. Suski,
  • K. Suski,
  • M. Szakáll,
  • T. Tajiri,
  • H. Taylor,
  • Y. Tobo,
  • Y. Tobo,
  • R. Ullrich,
  • D. Weber,
  • H. Wex,
  • T. F. Whale,
  • C. L. Whiteside,
  • K. Yamashita,
  • K. Yamashita,
  • A. Zelenyuk,
  • O. Möhler

DOI
https://doi.org/10.5194/acp-19-4823-2019
Journal volume & issue
Vol. 19
pp. 4823 – 4849

Abstract

Read online

We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating T-binned (1 ∘C) data over a wide T range (−36 ∘C <T<-4 ∘C). Specifically, we intercompared the geometric surface area-based ice nucleation active surface site (INAS) density data derived from our measurements as a function of T, ns,geo(T). Additionally, we also compared the ns,geo(T) values and the freezing spectral slope parameter (Δlog(ns,geo)/ΔT) from our measurements to previous literature results. Results show all three cellulose materials are reasonably ice active. The freezing efficiencies of NCC samples agree reasonably well, whereas the diversity for the other two samples spans ≈ 10 ∘C. Despite given uncertainties within each instrument technique, the overall trend of the ns,geo(T) spectrum traced by the T-binned average of measurements suggests that predominantly supermicron-sized cellulose particles (MCC and FC) generally act as more efficient ice-nucleating particles (INPs) than NCC with about 1 order of magnitude higher ns,geo(T).