Water (Jun 2020)

Response of Eutrophication Development to Variations in Nutrients and Hydrological Regime: A Case Study in the Changjiang River (Yangtze) Basin

  • Xianqiang Tang,
  • Rui Li,
  • Ding Han,
  • Miklas Scholz

DOI
https://doi.org/10.3390/w12061634
Journal volume & issue
Vol. 12, no. 6
p. 1634

Abstract

Read online

Data and literature related to water quality as well as nutrient loads were used to evaluate the Changjiang River (also Yangtze or Yangzi) Basin with respect to its hydrological regime, sediment transport, and eutrophication status. Waterbodies exhibited different eutrophic degrees following the ranking order of river < reservoir < lake. Most of the eutrophic lakes and reservoirs distributed in the upstream Sichuan Basin and Jianghan Plain are located in the middle main stream reaches. During the past decade, the water surface area proportion of moderately eutrophic lakes to total evaluated lakes continually increased from 31.3% in 2009 to 42.7% in 2018, and the trophic level of reservoirs rapidly developed from mesotrophic to slightly eutrophic. Construction and operation of numerous gates and dams changed the natural transportation rhythm of runoff, suspended solids (SS), and nutrients, and reduced flow velocity, resulting in decreased discharge runoff, slow water exchange, and decreased connectivity between rivers and lakes as well as accumulated nutrient and SS, which are the main driving forces of eutrophication. To mitigate eutrophication, jointly controlling and monitoring nutrient concentrations and flux at key sections, strengthening water quality management for irrigation backwater and aquaculture wastewater, and balancing transportation among runoff, SS, and nutrients is recommended.

Keywords