Effects of Nitrite Stress on the Antioxidant, Immunity, Energy Metabolism, and Microbial Community Status in the Intestine of <i>Litopenaeus vannamei</i>
Yafei Duan,
Guowei Zhong,
Yuxiu Nan,
Yukai Yang,
Meng Xiao,
Hua Li
Affiliations
Yafei Duan
Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Guowei Zhong
Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Yuxiu Nan
Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Yukai Yang
Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Meng Xiao
Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Hua Li
Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
Nitrite is the main environmental pollutant that endangers shrimp culture. Intestinal health is essential for the disease resistance of shrimp. In this study, Litopenaeus vannamei shrimps were separately exposed to 1 and 5 mg/L of nitrite stress for 48 h, and then the variations in intestinal health were investigated from the aspects of histology, antioxidant, immunity, energy metabolism, and microbial community status. The results showed that nitrite stress damaged intestinal mucosa, and 5 mg/L of nitrite induced more obvious physiological changes than 1 mg/L. Specifically, the relative expression levels of antioxidant (ROMO1, Nrf2, SOD, GPx, and HSP70), ER stress (Bip and XBP1), immunity (proPO, Crus, ALF, and Lys), inflammation (JNK and TNF-α), and apoptosis (Casp-3 and Casp-9) genes were increased. Additionally, intestinal energy metabolism was activated by inducing glucose metabolism (HK, PK, PDH, and LDH), lipid metabolism (AMPK and FAS), tricarboxylic acid cycle (MDH, CS, IDH, SDH, and FH), and electron transfer chain (NDH, CytC, COI, CCO, and AtpH) gene transcription. Further, the homeostasis of intestinal microbiota composition was also disturbed, especially the abundance of some beneficial genera (Clostridium sensu stricto 1, Faecalibacterium, Romboutsia, and Ruminococcaceae UCG-010). These results reveal that nitrite stress could damage the intestinal health of L. vannamei by destroying mucosal integrity, inducing oxidation and ER stress, interfering with physiological homeostasis and energy metabolism, and disrupting the microbial community.