Journal of Dairy Science (Apr 2024)
Linkage of in situ ruminal degradation of crude protein with ruminal degradation of amino acids and phytate from different soybean meals in dairy cows
Abstract
ABSTRACT: The objectives of this study were to determine the range in ruminal degradability of crude protein (CP) and intestinal digestibility of rumen undegradable protein in commercial soybean meal (SBM) and to investigate the range in in situ ruminal AA and phytate (InsP6) degradation and their relationship to CP degradation. An in situ study was conducted using 3 lactating Jersey cows with permanent rumen cannulas. Seventeen SBM variants from Europe, Brazil, Argentina, North America, and India were tested for ruminal CP and AA degradation, and in vitro intestinal digestibility of rumen undegradable protein. Nine variants were used to investigate the ruminal degradation of InsP6. The estimated rapidly degradable fraction (a) of CP showed an average value of 4.5% (range: 0.0%–9.0%), the slowly degradable fraction (b) averaged 95% (91%–100%), and the potential degradation was complete for all 17 SBM variants. The degradation of fraction b started after a mean lag phase of 1.7 h (1.1–2.0 h) at an average rate (c) of 10% per hour, but with a high range from 4.5% to 14% per hour. Differences in the degradation parameters induced a considerable range in CP effective degradation at a rumen passage rate of 6% per hour (CPED6) from 38% to 67%; hence, the concentration of rumen undegradable protein varied widely from 33% to 62%. The range in AA degradation between the SBM variants was high, with Ser showing the widest range, from 28% to 96%, and similar for the other AA. The regression equations showed close relationships between CP and AA degradation after 16 h of in situ incubation. However, the slopes of the linear regressions were significantly different between AA, suggesting that degradation among individual AA differs upon a change in CP degradation. The concentrations of InsP6 and myo-inositol pentakisphosphate in bag residues in the in situ study decreased constantly with longer ruminal incubation times. The ruminal degradation parameters of InsP6 ranged from 11% to 37% for fraction a, 63% to 89% for fraction b, and from 7.7% to 21% per hour for degradation rate c, with average values of 21%, 79%, and 16% per hour, respectively. The calculated InsP6 effective degradation at a rumen passage rate of 6% per hour (InsP6ED6) varied from 61% to 84% among the SBM variants. Significant correlations were detected between InsP6ED6 and CPED6 and between InsP6ED6 and chemical protein fractions A, B1, B2, B3, and C. Linear regression equations were developed to predict ruminal InsP6 degradation using CPED6 and chemical protein fractions B3 and C chosen by a stepwise selection procedure. We concluded that a high range in CP, AA, and InsP6 degradation exists among commercial SBM, suggesting that general degradability values may not be precise enough for diet formulation for dairy cows. Degradation of CP in SBM may be used to predict rumen degradation of AA and InsP6 using linear regression equations. Degradation of CP and InsP6 could also be predicted from the chemical protein fractions.