Physiological Reports (May 2023)
The effects of resistance training to near failure on strength, hypertrophy, and motor unit adaptations in previously trained adults
Abstract
Abstract Limited research exists examining how resistance training to failure affects applied outcomes and single motor unit characteristics in previously trained individuals. Herein, resistance‐trained adults (24 ± 3 years old, self‐reported resistance training experience was 6 ± 4 years, 11 men and 8 women) were randomly assigned to either a low‐repetitions‐in‐reserve (RIR; i.e., training near failure, n = 10) or high‐RIR (i.e., not training near failure, n = 9) group. All participants implemented progressive overload during 5 weeks where low‐RIR performed squat, bench press, and deadlift twice weekly and were instructed to end each training set with 0–1 RIR. high‐RIR performed identical training except for being instructed to maintain 4–6 RIR after each set. During week 6, participants performed a reduced volume‐load. The following were assessed prior to and following the intervention: (i) vastus lateralis (VL) muscle cross‐sectional area (mCSA) at multiple sites; (ii) squat, bench press, and deadlift one‐repetition maximums (1RMs); and (iii) maximal isometric knee extensor torque and VL motor unit firing rates during an 80% maximal voluntary contraction. Although RIR was lower in the low‐ versus high‐RIR group during the intervention (p < 0.001), total training volume did not significantly differ between groups (p = 0.222). There were main effects of time for squat, bench press, and deadlift 1RMs (all p‐values < 0.05), but no significant condition × time interactions existed for these or proximal/middle/distal VL mCSA data. There were significant interactions for the slope and y‐intercept of the motor unit mean firing rate versus recruitment threshold relationship. Post hoc analyses indicated low‐RIR group slope values decreased and y‐intercept values increased after training suggesting low‐RIR training increased lower‐threshold motor unit firing rates. This study provides insight into how resistance training in proximity to failure affects strength, hypertrophy, and single motor unit characteristics, and may inform those who aim to program for resistance‐trained individuals.
Keywords