Using Intercritical CCT Diagrams and Multiple Linear Regression for the Development of Low-Alloyed Advanced High-Strength Steels
Bryan Y. Navarrete Pino,
Antonio A. Torres Castillo,
Emmanuel J. Gutiérrez Castañeda,
Luis A. Espinosa Zúñiga,
Lorena Hernández Hernández,
Armando Salinas Rodríguez,
Rogelio Deaquino Lara,
Rocío Saldaña Garcés,
Iván A. Reyes Domínguez,
Javier Aguilar Carrillo,
Arnoldo Bedolla Jacuinde,
Carlos G. Garay Reyes,
Roberto Martínez Sánchez
Affiliations
Bryan Y. Navarrete Pino
Instituto de Metalurgia, Ingeniería de Materiales, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
Antonio A. Torres Castillo
Instituto de Metalurgia, Ingeniería de Materiales, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
Emmanuel J. Gutiérrez Castañeda
Instituto de Metalurgia, Ingeniería de Materiales, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
Luis A. Espinosa Zúñiga
Instituto de Metalurgia, Ingeniería de Materiales, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
Lorena Hernández Hernández
Instituto de Metalurgia, Ingeniería de Materiales, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
Armando Salinas Rodríguez
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe-Saltillo, Ramos Arizpe C.P. 25900, Mexico
Rogelio Deaquino Lara
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe-Saltillo, Ramos Arizpe C.P. 25900, Mexico
Rocío Saldaña Garcés
Corporación Mexicana de Investigación en Materiales S.A. de C.V, COMIMSA, Calle Ciencia y Tecnología 790, Saltillo C.P. 25290, Mexico
Iván A. Reyes Domínguez
Instituto de Metalurgia, Ingeniería de Materiales, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
Javier Aguilar Carrillo
Instituto de Metalurgia, Ingeniería de Materiales, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas Segunda Sección, San Luis Potosí C.P. 78210, Mexico
Arnoldo Bedolla Jacuinde
Edificio “U” Ciudad Universitaria, Universidad Michoacana de San Nicolás de Hidalgo, Morelia C.P. 58060, Mexico
Carlos G. Garay Reyes
CIMAV, Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico
Roberto Martínez Sánchez
CIMAV, Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31136, Mexico
The present work presents a theoretical and experimental study regarding the microstructure, phase transformations and mechanical properties of advanced high-strength steels (AHSS) of third generation produced by thermal cycles similar than those used in a continuous annealing and galvanizing (CAG) process. The evolution of microstructure and phase transformations were discussed from the behavior of intercritical continuous cooling transformation diagrams calculated with the software JMatPro, and further characterization of the steel by scanning electron microscopy, optical microscopy and dilatometry. Mechanical properties were estimated with a mathematical model obtained as a function of the alloying elements concentrations by multiple linear regression, and then compared to the experimental mechanical properties determined by uniaxial tensile tests. It was found that AHSS of third generation can be obtained by thermal cycles simulating CAG lines through modifications in chemistry of a commercial AISI-1015 steel, having an ultimate tensile strength of UTS = 1020–1080 MPa and an elongation to fracture of Ef = 21.5–25.3%, and microstructures consisting of a mixture of ferrite phase, bainite microconstituent and retained austenite/martensite islands. The determination coefficient obtained by multiple linear regression for UTS and Ef was R2 = 0.94 and R2 = 0.84, respectively. In addition, the percentage error for UTS and Ef was 2.45–7.87% and 1.18–16.27%, respectively. Therefore, the proposed model can be used with a good approximation for the prediction of mechanical properties of low-alloyed AHSS.