Self-assembly of DNA origami for nanofabrication, biosensing, drug delivery, and computational storage
Zhimei He,
Kejun Shi,
Jinggang Li,
Jie Chao
Affiliations
Zhimei He
Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Kejun Shi
Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Jinggang Li
Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Jie Chao
Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; Corresponding author
Summary: Since the pioneering work of immobile DNA Holliday junction by Ned Seeman in the early 1980s, the past few decades have witnessed the development of DNA nanotechnology. In particular, DNA origami has pushed the field of DNA nanotechnology to a new level. It obeys the strict Watson-Crick base pairing principle to create intricate structures with nanoscale accuracy, which greatly enriches the complexity, dimension, and functionality of DNA nanostructures. Benefiting from its high programmability and addressability, DNA origami has emerged as versatile nanomachines for transportation, sensing, and computing. This review will briefly summarize the recent progress of DNA origami, two-dimensional pattern, and three-dimensional assembly based on DNA origami, followed by introduction of its application in nanofabrication, biosensing, drug delivery, and computational storage. The prospects and challenges of assembly and application of DNA origami are also discussed.