International Journal of Mathematics and Mathematical Sciences (Jan 2003)

Multilocal invariants for the classical groups

  • Paul F. Dhooghe

DOI
https://doi.org/10.1155/S016117120301233X
Journal volume & issue
Vol. 2003, no. 1
pp. 27 – 63

Abstract

Read online

Multilocal higher-order invariants, which are higher-order invariants defined at distinct points of representation space, for the classical groups are derived in a systematic way. The basic invariants for the classical groups are the well-known polynomial or rational invariants as derived from the Capelli identities. Higher-order invariants are then constructed from the former ones by means of total derivatives. At each order, it appears that the invariants obtained in this way do not generate all invariants. The necessary additional invariants are constructed from the invariant polynomials on the Lie algebra of the Lie transformation groups.