Molecules (Jan 2025)

Water-Resistant Poly(ethylene oxide) Electrospun Membranes Enabled by In Situ UV-Cross-Linking for Efficient Daytime Radiative Cooling

  • Haiyan Zhang,
  • Qingpeng Wang,
  • Zhiguang Xu,
  • Yan Zhao

DOI
https://doi.org/10.3390/molecules30020421
Journal volume & issue
Vol. 30, no. 2
p. 421

Abstract

Read online

Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling. Herein, we report an in situ UV-crosslinking strategy for preparing PEO electrospun membranes with water resistance for the application of daytime radiative cooling. Acrylate-terminated PEO was synthesized and mixed together with cross-linking agents and photoinitiators to prepare the electrospinning solution. During electrospinning, the nanofibers were irradiated with UV light to initiate the cross-linking. For a membrane with a thickness of 200 μm, the average solar reflectance was 89.6%, and the infrared emissivity (8–13 μm) was 96.3%. Although slight swelling happens to the cross-linked membrane once it comes into contact with water, the fibrous morphology shows no obvious change when prolonging the water soaking time, indicating excellent water resistance. The outdoor cooling performance test results showed that compared to the average temperature of the air in the test box, the average temperature drop in the membrane before and after water soaking was 13.8 °C and 11.5 °C, respectively. Crosslinked PEO-based electrospun membranes with both water resistance and radiative cooling performance may have real applications for outdoor daytime radiative cooling.

Keywords