Agriculture & Food Security (Oct 2021)

Response of bread wheat to sulfur and phosphorus fertilizers in the north central Ethiopia

  • Shawl Assefa,
  • Wassie Haile,
  • Wondwosen Tena

DOI
https://doi.org/10.1186/s40066-021-00303-y
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Emerging research evidences since few years back are indicating that sulfur (S) is becoming a limiting nutrient in some Ethiopian soils. However, these evidences are not sufficient to make a solid conclusion that some soils of Ethiopia have became deficient in S. There is also limited information on the interaction effects of S and phosphorus (P) on bread wheat in Ethiopia. Therefore, an experiment was conducted to evaluate the effects of S and P fertilizers; and their interaction on yield components and yield of bread wheat grown at Gerba and Deneba locations, Northern central Ethiopia. A factorial experiment consisting of three levels (0, 15 and 30 kg ha−1) of S and four levels (0, 11, 22 and 44 kg ha−1) of P was laid out in RCB design with three replications. Results Results revealed that yield components and yield of wheat were significantly affected by both main and interaction effects of S and P fertilizers in both locations. At Gerba, S applied at 15 and 30 kg ha−1 increased grain yield (GY) of wheat by 32 and 44% over untreated control treatment, respectively. The corresponding increases at Deneba were 29 and 37% over untreated control treatment, respectively. However, significantly higher GY was obtained with treatments involving combined application of S and P than that obtained with single application of S or P. GY gains due to S and P interaction effect ranged from 46–65 to 52–75% over untreated control treatment at Gerba and Deneba, respectively. Optimum GY of wheat was obtained with treatment involving 15 kg S ha−1 + 22 kg P ha−1. Conclusion The results of this experiment revealed that application of P and S fertilizer has significantly increased yield component, grain and straw yield of wheat compared to unfertilized control plot, indicating insufficient soil P and S content for optimum production of wheat and this was confirmed by very low soil test values of S in both sites. Combined application of S and P produced significantly higher yield of wheat than that obtained with single application of S or P indicating synergistic interaction between these nutrients. In all cases, optimum grain and straw yield of wheat was obtained with treatment involving at 22 P + 15 S kg ha−1, while a partial budget analysis result revealed that a combination of 22P and 15S kg ha−1 produced the highest MMR (54.9%). Thus this treatment is found to be economically feasible treatment for bread wheat production in study area of the district.

Keywords