Nauka ta progres transportu (Apr 2013)

Elucidation of mechanism wear carbon steel with structure of martensite

  • I. A. Vakulenko

Journal volume & issue
no. 2 (44)
pp. 76 – 82

Abstract

Read online

Purpose. The purpose of the paper is an estimation of degree of metal hardness change for the railway wheel with martensite structure during rolling. Methodology. As strength characteristic the Rockwell hardness is used. Wear tests were conducted in the conditions of normal loading with (10%) and without sliding on the test equipment SMTs-2. Parameters of the fine crystalline structure (tetragonality degree of the crystalline grid, dislocation density, scale of coherent scattering regions, and disturbance value of the crystalline grid of second kind) are determined by the methods of X-ray structural analysis. Findings. During operation of the railway wheels with different strength level, origin of defects on the wheel thread is caused by simultaneous action of both the friction forces and the cyclically changing loadings. Considering that formation of damage centers is largely determined by the state of metal volumes near the wheel thread, one should expect the differences in friction processes development at high contact stress for the wheels with different strength level and structural state. Originality. During the wear tests softening effect of carbon steel with martensite quenching structure is obtained. Softening effect equaled 3.5–7% from the level of quenched metal hardness. The softening effect is accompanied by the reduction of tetragonality degree of the crystalline structure of martensite, reduction of coherent scattering regions, dislocation density increase and crystalline grid disturbance of the second kind. Practical value. The results point out the necessity for further studies to clarify the resulted softening effect mechanism.

Keywords