Energy Reports (Apr 2022)

Co-optimization of distribution system operation and transmission system planning: A decentralized stochastic solution

  • Jia Liu,
  • Zao Tang,
  • Peter Pingliang Zeng,
  • Yalou Li,
  • Qiuwei Wu

Journal volume & issue
Vol. 8
pp. 501 – 509

Abstract

Read online

The distribution system is normally equivalent as a dynamic power injected at the interconnected transmission bus. This cannot unlock the potential benefits of transmission–distribution interaction. To tackle this problem, this paper proposes a distributed stochastic optimization approach to simultaneously determine distribution system operation and transmission system planning. Uncertainties in the distribution and transmission systems are modelled using numbers of typical scenarios. The original problem is decomposed into the upper transmission network planning level and the lower distribution network operation one. Both two levels are linearized using a piecewise linearization approach to guarantee the convergence properties of the algorithm. Simulation results investigated on the integrated T24D9 system testify the high performance of the presented distributed framework. With the coordination of distribution systems, the transmission network planning solution decreases the investment and improves the renewable energy recommendation.

Keywords