Sukkur IBA Journal of Emerging Technologies (Jun 2022)

MnO2@Co3O4 nanocomposite based electrocatalyst for effective oxygen evolution reaction

  • Muhammad Yameen Solangi,
  • Abdul Hanan Samo,
  • Abdul Jaleel Laghari,
  • Umair Aftab,
  • Muhammad Ishaque Abro,
  • Muhammad Imran Irfan

DOI
https://doi.org/10.30537/sjet.v5i1.958
Journal volume & issue
Vol. 5, no. 1

Abstract

Read online

For large-scale energy applications, conceiving low-cost and simple earth-abundant electrocatalysts are more difficult. By using an aqueous chemical technique, MnO2 was added into Co3O4 with varying concentrations to prepare MnO2@Co3O4 nanocomposite (CM). In an aqueous solution of 1 M KOH, the electrocatalyst with a greater concentration of MnO2 outperforms in terms of OER. To confirm the composition, crystalline structure, and morphology of the electrocatalyst, analytical methods such as X-ray diffraction (XRD) techniques, Fourier transformed infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used. At 20 mA/cm2 current density, the electrocatalyst had a lowest overpotential of 310 mV verses Reversible hydrogen electrode (RHE). The CM-0.4 electrocatalyst has a small Tafel slope value and charge transfer resistance of approximately 72 mV/dec and 74 Ω which confirm its high catalytic activity. The electrocatalyst reveals a double layer capacitance (Rct) of 18 µF/cm2 and an electrochemical active surface area (ECSA) of 450 cm2, demonstrating that addition of MnO2 impurities into Co3O4 enhances the active catalyst sites. These findings contribute to the knowledge of these kind of catalysts, that will assist in the development of novel electrocatalysts which are feasible for prospective energy generation technologies.

Keywords