Data in Brief (Jun 2024)

Python data odyssey: Mining user feedback from google play store

  • Affan Yasin,
  • Rubia Fatima,
  • Ahmad Nauman Ghazi,
  • Ziqi Wei

Journal volume & issue
Vol. 54
p. 110499

Abstract

Read online

Context: The Google Play Store is widely recognized as one of the largest platforms for downloading applications, both free and paid11 https://shorturl.at/ryGP4.. On a daily basis, millions of users avail themselves of this marketplace, sharing their thoughts through various means such as star ratings, user comments, suggestions, and feedback. These insights, in the form of comments and feedback, constitute a valuable resource for organizations, competitors, and emerging companies seeking to expand their market presence. These comments provide insights into app deficiencies, suggestions for new features, identified issues, and potential enhancements. Unlocking the potential of this repository of suggestions holds significant value. Objective: This study sought to gather and analyze user reviews from the Google Play store for leading game apps. The primary aim was to construct a dataset for subsequent analysis utilizing requirements engineering, machine learning, and competitive assessment. Methodology: The authors employed a Python-based web scraping method to extract a comprehensive set of over 429,000+ reviews from the Google Play pages of selected apps. The scraped data encompassed reviewer names (removed due to privacy), ratings, and the textual content of the reviews. Results: The outcome was a dataset comprising the extracted user reviews, ratings, and associated metadata. A total of 429,000+ reviews were acquired through the scraping process for popular apps like Subway Surfers, Candy Crush Saga, PUBG Mobile, among others. This dataset not only serves as a valuable educational resource for instructors, aiding in the training of students in data analysis, but also offers practitioners the opportunity for in-depth examination and insights (in the past data of top apps).

Keywords