PLoS ONE (Jan 2022)
Alcohol inhibits the metabolism of dimethyl fumarate to the active metabolite responsible for decreasing relapse frequency in the treatment of multiple sclerosis.
Abstract
Dimethyl fumarate (DMF) is a first-line prodrug for the treatment of relapsing-remitting multiple sclerosis (RRMS) that is completely metabolized to monomethyl fumarate (MMF), the active metabolite, before reaching the systemic circulation. Its metabolism has been proposed to be due to ubiquitous esterases in the intestines and other tissues, but the specific enzymes involved are unknown. We hypothesized based on its structure and extensive presystemic metabolism that DMF would be a carboxylesterase substrate subject to interaction with alcohol. We sought to determine the enzymes(s) responsible for the extensive presystemic metabolism of DMF to MMF and the effect of alcohol on its disposition by conducting metabolic incubation studies in human recombinant carboxylesterase-1 (CES1), carboxylesterase-2 (CES2) and human intestinal microsomes (HIM), and by performing a follow-up study in an in vivo mouse model. The in vitro incubation studies demonstrated that DMF was only metabolized to MMF by CES1. Consistent with the incubation studies, the mouse pharmacokinetic study demonstrated that alcohol decreased the maximum concentration and area-under-the-curve of MMF in the plasma and the brain after dosing with DMF. We conclude that alcohol may markedly decrease exposure to the active MMF metabolite in the plasma and brain potentially decreasing the effectiveness of DMF in the treatment of RRMS.