Molecular Systems Biology (Jan 2015)

Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature

  • Daniel D Seaton,
  • Robert W Smith,
  • Young Hun Song,
  • Dana R MacGregor,
  • Kelly Stewart,
  • Gavin Steel,
  • Julia Foreman,
  • Steven Penfield,
  • Takato Imaizumi,
  • Andrew J Millar,
  • Karen J Halliday

DOI
https://doi.org/10.15252/msb.20145766
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Clock‐regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best‐understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to CYCLING DOF FACTOR 1 (CDF1) and FLAVIN‐BINDING, KELCH REPEAT, F‐BOX 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed‐forward motifs from two clock components to the floral regulator FT. In hypocotyl growth, the model described clock‐regulated transcription of PHYTOCHROME‐INTERACTING FACTOR 4 and 5 (PIF4, PIF5), interacting with post‐translational regulation of PIF proteins by phytochrome B (phyB) and other light‐activated pathways. The model predicted bimodal and end‐of‐day PIF activity profiles that are observed across hundreds of PIF‐regulated target genes. In the response to temperature, warmth‐enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature‐dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions.

Keywords