Frontiers in Immunology (May 2024)

Corilagin alleviates atherosclerosis by inhibiting NLRP3 inflammasome activation via the Olfr2 signaling pathway in vitro and in vivo

  • Jinqian Mao,
  • Yunfei Chen,
  • Qiushuo Zong,
  • Cuiling Liu,
  • Jiao Xie,
  • Yujie Wang,
  • David Fisher,
  • Nguyen Thi Thu Hien,
  • Khrystyna Pronyuk,
  • Erkin Musabaev,
  • Yiqing Li,
  • Lei Zhao,
  • Yiping Dang

DOI
https://doi.org/10.3389/fimmu.2024.1364161
Journal volume & issue
Vol. 15

Abstract

Read online

IntroductionAtherosclerosis, a leading cause of global cardiovascular mortality, is characterized by chronic inflammation. Central to this process is the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which significantly influences atherosclerotic progression. Recent research has identified that the olfactory receptor 2 (Olfr2) in vascular macrophages is instrumental in driving atherosclerosis through NLRP3- dependent IL-1 production.MethodsTo investigate the effects of Corilagin, noted for its anti-inflammatory attributes, on atherosclerotic development and the Olfr2 signaling pathway, our study employed an atherosclerosis model in ApoE−/− mice, fed a high-fat, high-cholesterol diet, alongside cellular models in Ana-1 cells and mouse bone marrow-derived macrophages, stimulated with lipopolysaccharides and oxidized low-density lipoprotein.ResultsThe vivo and vitro experiments indicated that Corilagin could effectively reduce serum lipid levels, alleviate aortic pathological changes, and decrease intimal lipid deposition. Additionally, as results showed, Corilagin was able to cut down expressions of molecules associated with the Olfr2 signaling pathway.DiscussionOur findings indicated that Corilagin effectively inhibited NLRP3 inflammasome activation, consequently diminishing inflammation, macrophage polarization, and pyroptosis in the mouse aorta and cellular models via the Olfr2 pathway. This suggests a novel therapeutic mechanism of Corilagin in the treatment of atherosclerosis.

Keywords