Journal of High Energy Physics (Aug 2022)

Entanglement entropy of gravitational edge modes

  • Justin R. David,
  • Jyotirmoy Mukherjee

DOI
https://doi.org/10.1007/JHEP08(2022)065
Journal volume & issue
Vol. 2022, no. 8
pp. 1 – 39

Abstract

Read online

Abstract We consider the linearised graviton in 4d Minkowski space and decompose it into tensor spherical harmonics and fix the gauge. The Gauss law of gravity implies that certain radial components of the Riemann tensor of the graviton on the sphere labels the superselection sectors for the graviton. We show that among these 6 normal components of the Riemann tensor, 2 are related locally to the algebra of gauge-invariant operators in the sphere. From the two-point function of these components of the Riemann tensor on S 2 we compute the logarithmic coefficient of the entanglement entropy of these superselection sectors across a spherical entangling surface. For sectors labelled by each of the two components of the Riemann tensor these coefficients are equal and their total contribution is given by − 16 3 $$ -\frac{16}{3} $$ . We observe that this coefficient coincides with that extracted from the edge partition function of the massless spin-2 field on the 4-sphere when written in terms of its Harish-Chandra character. As a preliminary step, we also evaluate the logarithmic coefficient of the entanglement entropy from the superselection sectors labelled by the radial component of the electric field of the U(1) theory in even d dimensions. We show that this agrees with the corresponding coefficient of the edge Harish-Chandra character of the massless spin-1 field on S d .

Keywords