Arabian Journal of Chemistry (Jul 2024)

Optimization and Techno-Economic analysis of catalytic gasification of wheat straw biomass using ASPEN PLUS model

  • Muhammad Faheem Ul Hasnain,
  • Hassan Osaf Ali,
  • Shahid Aziz,
  • Patrick Mountapmbeme Kouotou,
  • Muhammad Waqas,
  • Syed Murawat Abbas Naqvi,
  • Muhammad Hassaan Athar,
  • Muhammad Ammar,
  • Imran Shah,
  • Dong-Won Jung

Journal volume & issue
Vol. 17, no. 7
p. 105821

Abstract

Read online

Biomass gasification efficiently produces heat, electricity, and power. However, removing harmful contaminants from raw syngas is crucial. Tar production is a challenge due to blockage, plugging, and corrosion. Tar steam reforming (TSR) is the most promising technique, converting high molecular weight hydrocarbons into CO, CO2, H2, and CH4. In this study, a model of biomass gasification using wheat straw as biomass feedstock has been developed using Aspen Plus. The gasification flow sheet encompasses gasification, catalytic filter candle, gas cleaning, impurity removal reactor, separator, and subsequent sorbent reactors. Ni-based catalysts with Ni ratios (5%, 10%, and 15%) are used to simulate TSR reactions. Results show that the 15% Ni-Co-Al2O3 catalyst outperforms the 10% and 5% Ni-Co-Al2O3 catalysts. This study explores the impact of temperature, catalyst loadings, and steam-to-carbon (S/C) ratios on toluene conversion and hydrogen yield in catalytic steam reforming, along with temperature, steam-to-biomass ratios, and equivalence ratio on syngas fraction in gasification. It includes a techno-economic analysis of wheat straw gasification to improve syngas energy through efficient tar conversion.

Keywords