Acta Scientiarum: Agronomy (Jan 2012)
Soil surface spectral data from Landsat imagery for soil class discrimination=Informações espectrais de imagens Landsat da superfície do solo como indicativo na discriminação de classes de solos
Abstract
The aim of this study was to develop and test a method to determine and discriminate soil classes in the state of São Paulo, Brazil, based on spectral data obtained via Landsat satellite imagery. Satellite reflectance images were extracted from 185 spectral reading points, and discriminant equations were obtained to establish each soil class within the studied area. Sixteen soil classes were analyzed, and discriminant equations that comprised TM5/Landsat sensor bands 1, 2, 3, 4, 5, and 7 were established. The results showed that this methodology could effectively identify individual soil classes using discriminant analyses of the spectral data obtained from the surface. Success rates of > 40% were achieved for 14 of the 16 evaluated soil classes when applying the satellite image data. When the 10 soil classes containing the largest number of minimum cartographic areas were used, the hit rate increased to > 50%, for seven soil classes with a global hit rate of 52%. When the soil classes were grouped based on their parent materials, the hit rate increased to 70%. Thus, we concluded that the spectral method for soil classification was efficient.O objetivo deste trabalho foi desenvolver e testar um método para a determinação da classe de solo e sua separabilidade na paisagem dos solos presentes em uma área de estudo localizada no estado de São Paulo. Um conjunto de equações discriminantes foi obtido utilizando-se o sistema SAS que permitiu estabelecer a classe de solo na área de estudo. Foram analisadas 16 classes de solos as quais foram estabelecidas equações discriminantes compostas pelas bandas 1, 2, 3, 4, 5, e 7 do sensor TM5/ Landsat. As leituras espectrais foram realizadas em 185 pontos da área de estudo, donde se extraiu a reflectância da imagem. Classes de solos podem ser individualizadas por meio de análise discriminante utilizando-se informações sobre seu comportamento espectral obtida pela metodologia apresentada. A análise discriminante apresentou índices de acerto acima de 40% dentro da classe de solo avaliada, para 14 das 16 classes de solos. Utilizando-se as dez classes com maior número de áreas mínimas cartografadas o acerto, dentro a classe, foi maior que 50% para sete classes de solos, com acerto global estabelecido em 52%. Quando se agrupou as classes de solos em função do seu material de origem, o acerto passou para 70%.
Keywords