Advanced Powder Materials (Jun 2024)

Achieving broadband near-infrared luminescence in Cr3+-Activated Y2Mg2Al2Si2O12 phosphors via multi-site occupancy

  • Gui-Hua Li,
  • Han-Qi Wei,
  • Qi-Hua Yang,
  • Zhi-Wei Luo,
  • Ge-Mei Cai,
  • Li Ma,
  • Xiao-Jun Wang

Journal volume & issue
Vol. 3, no. 3
p. 100186

Abstract

Read online

Cr3+-activated near-infrared (NIR) phosphors are key for NIR phosphor-converted light emitting diodes (NIR pc-LED). While, the site occupancy of Cr3+ is one of the debates that have plagued researchers. Herein, Y2Mg2Al2Si2O12 (YMAS) with multiple cationic sites is chosen as host of Cr3+ to synthesize YMAS: xCr3+ phosphors. In YMAS, Cr3+ ions occupy simultaneously Al/SiO4 tetrahedral, Mg/AlO6 octahedral, and Y/MgO8 dodecahedral sites which form three luminescent centers named as Cr1, Cr2, and Cr3, respectively. Cr1 and Cr2 relate to an intermediate crystal field, with transitions of 2E→4A2 and 4T2→4A2 occurring simultaneously. As Cr3+ concentration increases, the 4T2→4A2 transition becomes more pronounced in Cr1 and Cr2, resulting in a red-shift and broadband emission. Cr3 consistently behaves a weak crystal field and exhibits the broad and long-wavelength emission. Wide-range NIR emission centering at 745 ​nm is realized in YMAS: 0.03Cr3+ phosphor. This phosphor has high internal quantum efficiency (IQE ​= ​86%) and satisfying luminescence thermal stability (I423 K ​= ​70.2%). Using this phosphor, NIR pc-LEDs with 56.6 ​mW@320 ​mA optical output power is packaged and applied. Present study not only demonstrates the Cr3+ multi-site occupancy in a certain oxide but also provides a reliable approach via choosing a host with diverse cationic sites and local environments for Cr3+ to achieve broadband NIR phosphors.

Keywords