Scientific Reports (Jul 2024)

Cytotoxic potential of Curcuma caesia rhizome extract and derived gold nanoparticles in targeting breast cancer cell lines

  • Ajoy Kumar Das,
  • Maina Borah,
  • Jon Jyoti Kalita,
  • Utpal Bora

DOI
https://doi.org/10.1038/s41598-024-66175-x
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Among all types of cancer, breast cancer is the most aggressive, as it is responsible for most of the cancer related death of women. Though several medical therapies are available, the scenario of curing such disease is not favorable. Therefore, there is an urgent need to find alternatives to deal with it. The knowledge of ethnopharmacy might give some better solution to mitigate such deadly diseases. Here, we are using the rhizome of Curcuma caesia Roxb. (Black turmeric), as well as gold nanoparticles (GNPs) synthesized with it to check their specific cytotoxic potentiality against breast cancer cell lines. In our study, ethanolic extract was used to evaluate the cytotoxic effect of the rhizome. GNPs were synthesized by using the same extract and characterized by UV–Vis spectroscopy (UV–Vis), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Thermo gravimetric analysis (TGA). The TEM, XRD, FTIR and TGA results revealed the successful synthesis and capping of GNPs. The UV–Vis Spectrum showed a sharp and narrow absorption peak at 550 nm and HRTEM confirmed both the stability and successful synthesis of the nanoparticles. The MTT assay of the crude extract revealed strong cytotoxicity against breast cancer cell lines viz. MCF-7 (ER+) and MDA MB-231 (Triple Negative Breast Cancer, TNBC) by showing IC50 values as 15.70 ± 0.029 and 21.57 ± 0.031 μg/mL respectively. For extract mediated GNPs, the IC50 values were found to be 6.44 ± 0.045 and 5.87 ± 0.031μg/mL respectively in both breast cancer cell lines. As the IC50 value for GNPs was found to be much lower than that of crude extract, it indicates a higher efficiency of the GNP. However, both the rhizome extract and its mediated GNPs showed more toxicity towards MDA MB-231 (TNBC) cell lines. It was also observed that the GNPs showed more toxicity towards TNBC cell lines compared to the rhizome extract. No toxicity was found in case of other cell lines such as L 929 and HeLa for both crude extract as well as for GNPs. These observations suggests that both the crude rhizome extract and its derived GNPs exhibit selective cytotoxic potential against breast cancer cell lines, which might be exploited for target specific treatment. Moreover, with an understanding of the mechanism behind the GNPs therapeutic efficiency, it can be developed as a personalized therapy to treat such type of cancers.

Keywords