Journal of Biomedical Science (Feb 2020)

Human fallopian tube epithelial cells exhibit stemness features, self-renewal capacity, and Wnt-related organoid formation

  • Yu-Hsun Chang,
  • Tang-Yuan Chu,
  • Dah-Ching Ding

DOI
https://doi.org/10.1186/s12929-019-0602-1
Journal volume & issue
Vol. 27, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Fallopian tube epithelial cells (FTEC) were thought to be the origin of high-grade serous ovarian carcinoma (HGSOC). Knowledge of the stemness or initiating characteristics of FTEC is insufficient. Previously, we have characterized the stemness cell marker of FTEC, this study aims to further characterize the clonogenicity and spheroid features of FTEC. Methods We successfully derived FTECs from the epithelial layer of the human fallopian tubes. We examined the morphology, proliferation rate, doubling time, and clonal growth of them. At passage 3, the sphere formations on gelatin-coated culture, suspension culture, and matrigel culture were observed, and the expression of LGR5, SSEA3, SSEA4, and other stemness markers was examined. Furthermore, tissue-reconstituted organoids from coculture of FTEC, fallopian stromal cells (FTMSC) and endothelial cells (HUVEC) were examined. Results FTEC exhibited cuboidal cell morphology and maintained at a constant proliferation rate for up to nine passages (P9). FTEC could proliferate from a single cell with a clonogenic efficiency of 4%. Flow cytometry revealed expressions of normal stem cell markers (SSEA3, SSEA4, and LGR5) and cancer stem cell markers (CD24, CD44, CD117, ROR1, and CD133). FTEC formed spheres and colonies when cultured on low attach dish. In the presence of Matrigel, the stemness and colony formation activity were much enhanced. In co-culturing with FTMSC and HUVEC, FTEC could form organoids that could be blocked by Wnt inhibitor DKK1. Expressions of LGR5 and FOXJ1 expression were also decreased by adding DKK1. Conclusion We demonstrated abundantly presence of stem cells in human FTECs which are efficient in forming colonies, spheres and organoids, relying on Wnt signaling. We also reported for the first time the generation of organoid from reconstitutied cell lineages in the tissue. This may provide a new model for studying the regneration and malignant transformation of the tubal epithelium.

Keywords