Symmetry (Aug 2018)

Evaluation of a Third-Party Logistics (3PL) Provider Using a Rough SWARA–WASPAS Model Based on a New Rough Dombi Aggregator

  • Siniša Sremac,
  • Željko Stević,
  • Dragan Pamučar,
  • Miloš Arsić,
  • Bojan Matić

DOI
https://doi.org/10.3390/sym10080305
Journal volume & issue
Vol. 10, no. 8
p. 305

Abstract

Read online

For companies active in various sectors, the implementation of transport services and other logistics activities has become one of the key factors of efficiency in the total supply chain. Logistics outsourcing is becoming more and more important, and there is an increasing number of third party logistics providers. In this paper, logistics providers were evaluated using the Rough SWARA (Step-Wise Weight Assessment Ratio Analysis) and Rough WASPAS (Weighted Aggregated Sum Product Assessment) models. The significance of the eight criteria on the basis of which evaluation was carried out was determined using the Rough SWARA method. In order to allow for a more precise consensus in group decision-making, the Rough Dombi aggregator was developed in order to determine the initial rough matrix of multi-criteria decision-making. A total of 10 logistics providers dealing with the transport of dangerous goods for chemical industry companies were evaluated using the Rough WASPAS approach. The obtained results demonstrate that the first logistics provider is also the best one, a conclusion confirmed by a sensitivity analysis comprised of three parts. In the first part, parameter ρ was altered through 10 scenarios in which only alternatives four and five change their ranks. In the second part of the sensitivity analysis, a calculation was performed using the following approaches: Rough SAW (Simple Additive Weighting), Rough EDAS (Evaluation Based on Distance from Average Solution), Rough MABAC (MultiAttributive Border Approximation Area Comparison), and Rough TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). They showed a high correlation of ranks determined by applying Spearman’s correlation coefficient in the third part of the sensitivity analysis.

Keywords