Heliyon (Apr 2024)

Quantitative analysis of noninvasive deep temporal interference stimulation: A simulation and experimental study

  • Zohre Mojiri,
  • Amir Akhavan,
  • Ehsan Rouhani,
  • Sayed Jalal Zahabi

Journal volume & issue
Vol. 10, no. 8
p. e29482

Abstract

Read online

Background: Deep brain stimulation (DBS) is a method for stimulating deep regions of the brain for the treatment of various neurological and psychiatric disorders such as depression, obsessive-compulsive disorder, addiction, and Parkinson's disease. Generally, DBS can be performed using both invasive and non-invasive approaches. Invasive DBS is associated with several problems, including intracranial bleeding, infection, and changes in the position of the electrode tip. Temporal interference (TI) stimulation is a non-invasive technique used to stimulate deep regions of the brain by applying two high-frequency sinusoidal currents with slightly different frequencies. New method: This paper presents insights into the response of the spiking in the Hodgkin-Huxley (HH) neuron model of the rat somatosensory cortex by changing the parameters carrier frequency, current ratio, and difference frequency of TI stimulation. Furthermore, in order to experimentally evaluate the effect of TI stimulation on the activation of the left motor cortex, an experiment was conducted to measure the motion induced by the balanced and unbalanced TI stimulation. In the experiment, a three-axis accelerometer was attached to the right hand of the animal to determine the position of the hand. Results: Simulation results of the HH model showed that the frequency of the envelope of the TI stimulation is identical to the fundamental frequency of the neuron spikes. This result was obtained for difference frequencies of 6 Hz and 9 Hz in balanced and unbalanced TI stimulations. Moreover specifically, when the difference frequency is set to zero, the carrier frequency is within the range of 1300–1400 Hz, and the current range is between 140 and 250 μA/cm2, the firing rate reached to its highest value. In the experimental result, the maximum range of movement at a difference frequency of Δf = 6 Hz was approximately 1.6 mm and 5.3 mm in the z and y directions respectively. Comparison with existing method: The results of the spatial spectrum of the rat hand movement were consistent with the spectrum information of the simulation results. Additionally, steering the interfering region to the left motor cortex leads to noticeable contralateral movement of the right hand while no movement was observed in the right hand during the stimulation of the right motor cortex. Conclusion: This technique of stimulation for the deep regions of the brain is a promising tool to noninvasively treat various neurological and psychiatric disorders such as morphine dependence in addicted rats.

Keywords