E3S Web of Conferences (Jan 2023)
Synthesis of Newly Formulated Aluminium Composite through Powder Metallurgy using Waste Bone Material
Abstract
The increasing concern for sustainable materials and waste management has led to innovative approaches in material science. This study explores the potential benefit of aggregate waste in the production of aluminum composites practicing powder metallurgy techniques. The aim is to investigate the feasibility of incorporating bone material into aluminium matrices to enhance the composite’s mechanical properties. The research involves several key steps. Firstly, waste bone material is collected and processed to obtain a fine powder suitable for powder metallurgy. Various techniques such as grinding, milling, or pulverization are employed to achieve the desired particle size distribution. Next, the bone powder is mixed with aluminium powder in predetermined ratios to create composite blends. The composite blends are then subjected to compaction using powder metallurgy techniques, including cold pressing and sintering. The compaction process aims to consolidate the powders and facilitate the formation of a solid composite structure. The aluminum composites mechanical characteristics are then assessed. The effects of incorporating bone material are assessed using tests on tensile strength, ductility, hardness, and other relevant mechanical properties. Comparative analysis is performed between the composites with bone material and traditional aluminium composites to assess any improvements or changes in performance.