Antioxidants (Oct 2023)

Dietary Betaine Supplementation Enhances Colonic Barrier Function through the Nrf2/Keap1 and TLR4-NF-κB/MAPK Signaling Pathways and Alters Colonic Microbiota in Bama Mini-Pigs

  • Liang Xiong,
  • Kai Wang,
  • Mingtong Song,
  • Md. Abul Kalam Azad,
  • Qian Zhu,
  • Xiangfeng Kong

DOI
https://doi.org/10.3390/antiox12111926
Journal volume & issue
Vol. 12, no. 11
p. 1926

Abstract

Read online

This study evaluated the effects of betaine supplementation in sows and/or their offspring’s diets on the redox status, immune and inflammatory levels, colonic barrier function, and colonic microbial community of offspring piglets. Thirty-six Bama mini-sows on day 3 of gestation and their weaned offspring piglets (28 d of age) were randomly allocated to the following treatments: (1) sows and their weaned offspring fed the basal diet (control group, Con group); (2) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet (sows betaine group, SB group); (3) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet with 2.50 kg/t betaine (sow-offspring betaine group, S-OB group). Six offspring piglets from each group were selected to collect plasma and colon samples on d 30, 60, and 90 after weaning. Compared with the Con group, the plasma levels of IgA, IgM, GSH-Px, and SOD during d 30–90 after weaning, IFN-α, T-AOC, and GSH on d 30 and 60 after weaning were increased, while MDA during d 30–90 after weaning was decreased in the SB and S-OB groups (p p p Prevotella, and Parabacteroides) (p < 0.05). Collectively, these findings suggest that dietary betaine supplementation in sows and/or their offspring could improve offspring piglets’ redox status and immune and anti-inflammatory levels and enhance the colonic barrier function by activating Nrf2/Keap1 and inhibiting TLR4-NF-κB/MAPK signaling pathways.

Keywords