Dietary Betaine Supplementation Enhances Colonic Barrier Function through the Nrf2/Keap1 and TLR4-NF-κB/MAPK Signaling Pathways and Alters Colonic Microbiota in Bama Mini-Pigs
Liang Xiong,
Kai Wang,
Mingtong Song,
Md. Abul Kalam Azad,
Qian Zhu,
Xiangfeng Kong
Affiliations
Liang Xiong
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Kai Wang
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Mingtong Song
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Md. Abul Kalam Azad
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Qian Zhu
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Xiangfeng Kong
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
This study evaluated the effects of betaine supplementation in sows and/or their offspring’s diets on the redox status, immune and inflammatory levels, colonic barrier function, and colonic microbial community of offspring piglets. Thirty-six Bama mini-sows on day 3 of gestation and their weaned offspring piglets (28 d of age) were randomly allocated to the following treatments: (1) sows and their weaned offspring fed the basal diet (control group, Con group); (2) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet (sows betaine group, SB group); (3) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet with 2.50 kg/t betaine (sow-offspring betaine group, S-OB group). Six offspring piglets from each group were selected to collect plasma and colon samples on d 30, 60, and 90 after weaning. Compared with the Con group, the plasma levels of IgA, IgM, GSH-Px, and SOD during d 30–90 after weaning, IFN-α, T-AOC, and GSH on d 30 and 60 after weaning were increased, while MDA during d 30–90 after weaning was decreased in the SB and S-OB groups (p p p Prevotella, and Parabacteroides) (p < 0.05). Collectively, these findings suggest that dietary betaine supplementation in sows and/or their offspring could improve offspring piglets’ redox status and immune and anti-inflammatory levels and enhance the colonic barrier function by activating Nrf2/Keap1 and inhibiting TLR4-NF-κB/MAPK signaling pathways.