ChemEngineering (May 2024)
A Framework for Upscaling of Emerging Chemical Processes Based on Thermodynamic Process Modeling and Simulation
Abstract
Prospective environmental and technological assessment of emerging chemical processes is necessary to identify, analyze and evaluate the technologies that are highly imperative in the transition towards climate neutrality. The investigation of the environmental impacts and material and energy requirements of the processes at the low technology readiness level (TRL) is important in making early decisions about the feasibility of adapting and upscaling the process to the industrial level. However, the upscaling of new chemical processes has always been a major challenge; and in this context, there is no general methodological guidance available in the literature. Hence, a new comprehensive methodological framework for upscaling of novel chemical processes is designed and presented based on thermodynamic process modeling and simulation. The practical implementation of the proposed methodology is extensively discussed by developing a scaled-up novel carbon capture and utilization (CCU) process comprised of sequestration of carbon dioxide (CO2) from blast furnace gas with a capacity of 1000 liter per hour (L/h) using methanol and its utilization as a precursor to produce methane (CH4). It was found that thermodynamic process modeling and simulations based on the perturbed-chain statistical associating (PC-SAFT) equation of state (EOS) can precisely estimate the CO2 solubility in methanol and conversion to CH4 at various temperature and pressure conditions. The achieved thermophysical property and kinetics parameters can be employed in process simulations to estimate scaled-up environmental flows and material and energy requirements of the process.
Keywords